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1  |  INTRODUC TION

Alzheimer's disease (AD) is the most prevalent form of neurodegen-
erative dementia affecting nearly 30 million people worldwide.1,2 
Though beta-amyloid (Aβ) plaques and oligomers as well as aggregated 

phosphorylated tau tangles are the most studied therapeutic targets 
for AD,3 it remains unclear how these proteinaceous inclusions lead to 
neuronal death and cognitive impairment. Aβ plaques are composed of 
aggregated Aβ peptides that are generated from the amyloid precursor 
protein (APP) upon a series of enzymatic cleavages. Aβ peptides can 
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Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting 
millions of people worldwide. Extracellular beta-amyloid (Aβ) plaques and neurofi-
brillary tau tangles are classical hallmarks of AD pathology and thus are the prime 
targets for AD therapeutics. However, approaches to slow or stop AD progression 
and dementia by reducing Aβ production, neutralizing toxic Aβ aggregates, or inhibit-
ing tau aggregation have been largely unsuccessful in clinical trials. The contribution 
of dysregulated vascular components and inflammation is evident in AD pathology. 
Vascular changes are detectable early in AD progression, so treatment of vascular 
defects along with anti-Aβ/tau therapy could be a successful combination therapeu-
tic strategy for this disease. Here, we explain how vascular dysfunction mechanisti-
cally contributes to thrombosis as well as inflammation and neurodegeneration in AD 
pathogenesis. This review provides evidence that addressing vascular dysfunction in 
people with AD could be a promising therapeutic strategy.

K E Y W O R D S
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Essentials

•	 Crosstalk between beta-amyloid (Aβ) and blood proteins contributes to Alzheimer's disease (AD).
•	 Contact system activation correlates with memory impairment in AD and mild cognitive impairment.
•	 Blood clots can block blood flow and cause inflammation and cell death, which contribute to AD.
•	 Preventing contact system activation or resistant blood clots are promising therapies for AD.
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be of various lengths, ranging from 38 to 49 amino acids in length (ie, 
Aβ38-Aβ49), depending on the type of APP cleavage.4-6 Among these 
different lengths, Aβ42 and Aβ43 aggregates are the most neurotoxic 
and pathogenic.5,6 However, approaches to prevent or slow neuro-
degeneration and dementia by reducing Aβ production, neutralizing 
toxic Aβ aggregates, or inhibiting tau aggregation have been largely 
unsuccessful.7-10 There are several other factors that may play a role in 
neurodegeneration and cognitive decline in AD,11-19 however, which 
should also be considered when defining new targets and developing 
effective AD therapeutics.

AD is recognized as a multifactorial disease, where numerous 
components, including cerebrovascular dysfunction and inflamma-
tion, drive disease pathology.16,20,21 Cerebrovascular abnormalities, 
such as decreased blood flow, hemorrhage, microinfarcts, small-
vessel disease, dysregulated plasma contact system, and whitemat-
ter hyperintensities, are observed in >50% of people with AD.13,22-31 
In a large data-driven study of people with late-onset AD (LOAD), 
imaging techniques were used to analyze brain Aβ aggregates, ce-
rebral glucose metabolism, cerebral blood flow, and functional ac-
tivity/brain structural patterns in relation to disease progression. 
Temporal ordering of these abnormalities was assigned using trajec-
tory models of aging. This analysis revealed that dysregulated cere-
bral blood flow occurs before Aβ deposition in people with LOAD.16 
Similarly, white matter hyperintensities are an early pathological fea-
ture observed in people with early-onset AD (EOAD).30

The most clear-cut and classic example of crosstalk between 
neurodegeneration and vascular damage in AD is cerebral amyloid 
angiopathy (CAA). Between 80% and 95% of AD patients develop 
CAA, a condition characterized by deposition of Aβ aggregates in 
and around cerebral blood vessels.3,32 It results in damage to en-
dothelial cells and the blood vessel wall, which can lead to a loss 
in blood-brain barrier (BBB) integrity33,34 and inflammatory activ-
ity. In animal models of CAA, Aβ can trigger structural as well as 
functional damage in smooth muscle cells, pericytes, and endothelial 
cells.17,35-37 CAA also leads to production of superoxide radicals,36 
which impairs the perivascular drainage system, an Aβ clearance 
pathway, in both AD mouse models and human patients,32,38-40 
thereby augmenting Aβ-driven damage within the brain. Thus, CAA 
is a major contributor to cerebrovascular dysfunction, which can 
lead to microhemorrhage, vessel occlusion, loss of smooth muscle 
cells, and disruption of vasoactivity in AD.32,41,42

Impaired BBB integrity can lead to abnormal levels of Aβ in the 
plasma as well as extravasation of blood proteins, such as fibrin(o-
gen), into the brain. In the circulation, Aβ can activate the plasma 
contact system, which induces coagulation and inflammation.13,43-46 
Extravasation of fibrin(ogen) into the brain can lead to its persistent 
accumulation as well as neuroinflammation. Below, we provide de-
tailed evidence of the role of vascular dysfunction in AD pathogenesis. 
Table 1 summarizes the human and animal model evidence for vascu-
lar dysfunction and contact system activation in AD pathophysiology 
discussed herein. This review emphasizes the importance of better 
understanding the mechanistic link between Aβ and components of 
the contact system and the vasculature in AD, as it could provide alter-
native therapeutic strategies for many people with AD.

2  |  Aβ  AC TIVATES FAC TOR XII - DRIVEN 
INTRINSIC COAGUL ATION

The plasma contact system is comprised of a group of plasma pro-
teins, including factor XII (FXII), factor XI (FXI), prekallikrein (PK), and 
high molecular weight kininogen (HK). The role of the plasma con-
tact system is to (i) promote thrombin generation and fibrin clotting 
via activated FXI (FXIa) and (ii) induce inflammation upon cleavage 
of HK and release of bradykinin (Figure 1). When FXII is activated 
(FXIIa) by its binding to a negatively charged surface, both of these 
pathways can be triggered.47 Though it is primarily produced in the 
liver and found in the blood,48 FXII has been found in the brain and 
even localized with Aβ plaques in the postmortem brain tissue of 
people with AD.49,50

Aβ42 can bind to and activate FXII and thus trigger the contact 
system.43-46 Addition of Aβ42 to normal human plasma accelerates 
the generation of FXIIa.45 To trigger intrinsic clotting, FXIIa cleaves 
FXI. This activated coagulation factor, FXIa, sets off a series of ac-
tivation events that eventually result in fibrin clot formation.51 The 
level of FXI is significantly lower in the plasma of people with AD 
compared to age-matched nondemented individuals,43 suggesting 
increased FXIa levels and increased activation of the intrinsic clotting 
system in AD. Furthermore, using both human plasma and purified 
protein systems, it has been shown that Aβ can promote thrombin 
generation required for fibrin clot formation.43 Additionally, the 
procoagulant effect of Aβ42 is specifically via FXII activation since 
Aβ42 has no effect on thrombin generation in FXII-deficient human 
plasma.43 Moreover, antibody-mediated blocking of FXII activation 
abolishes Aβ42-induced thrombin generation in plasma.43 Increased 
FXIIa levels are also reported in the plasma of people with AD.13 
Together, these findings support the hypothesis that Aβ42-induced 
FXIIa generation promotes fibrin production. These fibrin deposits, 
which aggregate with Aβ and are resistant to degradation (discussed 
in detail below), may not only increase the number of occlusive 
thrombi in vessels but could also drive inflammation associated with 
AD pathology.52-56 Therefore, blocking Aβ42-induced FXII activa-
tion could be a therapeutic strategy to reduce vascular pathologies 
in AD.

AD patient plasma also often shows prolonged activated partial 
thromboplastin time (aPTT), a test that measures intrinsic clotting, 
compared to age-matched healthy control plasma.57 Prolonged aPTT 
correlates with cognitive impairment in people with AD,57 suggest-
ing that a coagulation defect could affect memory. Extrinsic clotting 
is not significantly altered in these patients with AD,57 indicating 
that the issue lies within the intrinsic clotting pathway. Moreover, 
analysis of plasma from an AD mouse model (5XFAD) that overex-
presses human APP also shows significantly prolonged intrinsic clot-
ting time compared to that of their wild-type littermates.57 It should 
be noted that although Aβ42 is a procoagulant,58 its precursor APP 
possesses an anticoagulant property.59,60 Furthermore, AD is a het-
erogeneous disease, and it is possible that depletion of coagulation 
factors over time due to a continuously activated contact system 
or the presence of some other protease inhibitors could also affect 
intrinsic clotting in AD.
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3  |  Aβ  TRIGGERS INFL AMMATION 
THROUGH F XII - DRIVEN PK AC TIVATION 
AND BR ADYKININ GENER ATION

FXII-driven contact system activation not only produces fibrin 
clots but also generates proinflammatory bradykinin.61 FXIIa 
cleaves PK to generate kallikrein, which in turn cleaves HK.51,61 
The proinflammatory molecule, bradykinin, is liberated upon HK 
cleavage (Figure 1). In addition to having increased FXIIa,13 AD pa-
tient plasma also shows increased kallikrein-kinin activity13,43 that 
leads to inflammation. It has been suggested that kallikrein could 
drive hemorrhagic conditions,62,63 and therefore AD patients with 
increased kallikrein activity could be at greater risk of cerebral 
hemorrhage. Furthermore, levels of full-length/intact HK are 
decreased, while levels of cleaved HK (cHK) 13,64 and bradykinin 
are increased in the plasma of people with AD compared to that 
of controls.65 This increased bradykinin not only induces inflam-
mation but also can lead to edema, vasodilation, and increased 
BBB permeability.61,66-68 Consistently, an impaired BBB is often 

observed in people with AD.17 Furthermore, the addition of Aβ42 
to human plasma from nondemented individuals shows signifi-
cantly higher levels of bradykinin than untreated plasma.12,65 It has 
also been shown that AD mice that overexpress Aβ have increased 
plasma cHK levels.69 Additionally, it has been reported that in-
travenous injection of Aβ42 increases HK cleavage and kallikrein 
activity in wild-type mouse plasma.13 The connection between a 
dysregulated contact system and AD is further supported by find-
ings that people with AD have increased cHK in their cerebrospi-
nal fluid (CSF).70 These findings suggest that both the thrombotic 
(via FXI) and inflammatory (via HK cleavage and bradykinin) arms 
of the contact system are activated in AD.

Vascular abnormalities alone can lead to memory impair-
ment.71 However, the coexistence of AD and cerebrovascular 
pathology could exert synergistic effects on brain and memory 
function. If the peripheral contact activation system contributes 
to AD progression and pathology, there should be a correlation 
between these changes and memory impairment and/or AD 
pathologies.

TA B L E  1  Human and animal model evidence of vascular dysfunction and contact system activation in AD

Symptom/Phenotype Reference

Patients with AD

Vascular Pathology Vascular dysfunction is an early pathology. [16,30]

CAA is observed in 80%-95% of patients. [3,32]

Impaired BBB integrity and extravasation of fibrin(ogen) into the brain parenchyma is observed. [17,33,34,79]

Dutch and Iowa APP mutations increase cerebral fibrin deposits. [55]

Patient plasma exhibits increased aPTT. [57]

Contact System 
Activation

Aβ42 activates FXII to trigger the contact system. [43–46]

FXII is found in Aβ plaques in postmortem brain tissue. [50]

FXIIa, cHK, and bradykinin levels are increased in patient plasma. [13,64,65]

Kallikrein activity is increased in patient plasma. [13]

Intact HK levels are decreased in patient plasma. [13]

FXI levels are decreased in patient plasma. [43]

cHK levels are increased in patient CSF. [70]

Memory impairment correlates with vascular deficits and cHK levels. [64,65,71]

Animal models

Vascular Pathology Anticoagulation treatment delays AD pathogenesis. [54]

Fibrin(ogen) is associated with abnormal thrombosis, fibrinolysis, inflammation, neuronal damage, 
and cognitive impairment in AD.

[15,33,52,79]

BBB integrity is impaired in AD. [17,54]

Cerebrovascular lesions induce Aβ deposition in AD. [82,83]

Contact System 
Activation

Aβ42 activates FXII to trigger the contact system. [13]

Contact system activation is associated with BBB damage. [62,63,66]

Inhibition of contact system activation ameliorates AD pathology and cognitive decline. [69]

Abbreviations: Aβ, beta-amyloid; AD, Alzheimer's disease; APP, amyloid precursor protein; aPTT, activated partial thromboplastin time; BBB, blood-
brain barrier; CAA, cerebral amyloid angiopathy; cHK, cleaved high molecular weight kininogen; CSF, cerebrospinal fluid; FXI, factor XI; FXII, factor 
XII; FXIIa, activated factor XII; HK, high molecular weight kininogen.



4  |    SINGH et al.

The level of CSF Aβ42 is a well-established marker of AD as the 
amount of CSF Aβ42 decreases with AD progression.72-74 The con-
centration of plasma HK is positively correlated with the level of CSF 
Aβ42; as HK levels decrease in plasma, levels of Aβ42 decrease in the 
CSF.13 Additionally, the level of plasma cHK is significantly correlated 
with memory test scores in AD patients.64 For example, as cHK lev-
els increase, indicating contact system activation, cognitive status 
decreases as defined by the Mini-Mental State Examination (MMSE) 
or clinical dementia rating.64 Moreover, increased plasma bradykinin 
level is associated with memory impairment in people with AD.65 
Plasma cHK levels also positively correlate with Consortium to 
Establish a Registry for Alzheimer’s Disease scores, which define the 
extent of Aβ plaque pathology at postmortem analysis.64,75 As these 
associations were obtained in a cross-sectional analysis, a longitu-
dinal analysis of contact activation in AD and its association with 
memory decline needs to be performed.

These findings suggest that a dysregulated plasma contact sys-
tem could be a reliable predictor of cerebral pathology and mem-
ory impairment in AD. However, contact activation is not specific 
to AD, and therefore it should be used along with established 

fluid biomarkers (CSF Aβ42, phosphorylated tau), imaging modali-
ties (positron emission tomography, magnetic resonance imaging), 
and/or memory tests 76 for diagnosing AD patients with vascular 
dysfunction.

4  |  DYSREGUL ATED CONTAC T SYSTEM: 
AN E ARLY PREDIC TOR OF COGNITIVE 
DECLINE

It has been suggested that subtle losses in cognitive function may 
be an early sign of AD development.76,77 Mild cognitive impairment 
(MCI) refers to the intermediary stage between the cognitive decline 
associated with normal aging and mild dementia.72,76 People with 
MCI show only slight cognitive defects, which do not significantly 
affect their daily functioning.72,76,77 However, people with MCI are 
at a higher risk of developing AD compared to cognitively normal in-
dividuals. Specifically, each year 10% to 15% of people with MCI will 
develop AD, while only 1% to 2% of cognitively normal people will 
develop AD.72,76 It was recently reported that the contact system is 

F I G U R E  1  Activation of the contact system induces thrombotic and inflammatory pathways in Alzheimer's disease (AD). Activation 
of coagulation factor XII (FXII) by Aβ42 can trigger the intrinsic clotting pathway as well as an inflammatory pathway. A, Intrinsic clotting 
occurs when activated FXII (FXIIa) activates factor XI (FXI) to FXIa. Eventually, prothrombin is cleaved to thrombin, which cleaves 
fibrinogen into fibrin. Aβ42 can interact with fibrinogen, and fibrin clots formed in the presence of Aβ42 are resistant to degradation. 
These resistant blood clots can increase the incidence of vessel occlusion, leading to microinfarcts, blood-brain barrier (BBB) damage, and 
inflammation. Extravasated fibrin(ogen) can also induce cerebral inflammation. B, FXIIa cleaves prekallikrein (PK) to generate kallikrein. The 
proinflammatory peptide, bradykinin, is released upon high molecular weight kininogen (HK) cleavage by kallikrein. Bradykinin can induce 
vasodilation, edema, inflammation, and BBB damage. HK is essential for normal operation of both thrombotic and inflammatory pathways of 
the contact system, as PK and FXI need to bind HK to be activated by FXIIa
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also dysregulated in people with MCI. For example, kallikrein activ-
ity and levels of cHK and bradykinin are significantly higher in the 
plasma of people with MCI than age-matched cognitively normal in-
dividuals.77 Moreover, these changes are more pronounced in MCI 
patients enorr with impaired short-term recall memory.77 A signifi-
cant inverse correlation is found between short-term recall scores 
and kallikrein activity or level of cHK in plasma.77 Because short-
term recall memory is one of the earliest cognitive changes observed 
in people with AD, its correlation with increased contact system ac-
tivation suggests that evidence of contact activation could predict 
cognitive changes and AD progression.

5  |  FIBRINOGEN: A SIGNIFIC ANT 
CONTRIBUTOR TO AD PATHOGENESIS

In the circulatory system, conversion of the blood protein fibrino-
gen into a fibrin clot by thrombin is essential to stop or prevent 
bleeding.78 However, a damaged BBB allows for extravasation of 
fibrin(ogen) and other blood proteins into the brain parenchyma, 
where it can induce inflammation and neuronal damage.15,33,54 
Brains of AD mouse models and people with AD often exhibit im-
paired BBB integrity,17 which can be exacerbated by coexistence of 
vascular disease or cerebrovascular dysfunction.17 Extravasation of 
fibrinogen into the brain parenchyma also leads to the formation of 
fibrin deposits.79 The extent of fibrin deposition positively corre-
lates with neurodegeneration, suggesting that the accumulation of 
fibrin(ogen) directly affects cognitive function.79

In cerebral blood vessels, fibrin(ogen) can interact directly with 
Aβ, which leads to degradation-resistant blood clots, vessel occlu-
sion, and subsequently ischemic conditions and neuronal death.52-56 
The inflammatory response caused by vessel occlusion can also in-
crease the production of Aβ and lead to greater Aβ plaque depo-
sition, which has been shown in animal models.80-83 Accordingly, 
it was recently shown that long-term treatment with dabigatran, a 
direct thrombin inhibitor and anticoagulant,84 prevents occlusive 
thrombi formation in an AD mouse model.54 This reduction of occlu-
sive thrombi/fibrin deposits also prevents neuroinflammation, BBB 
damage, and cognitive impairment in an AD mouse model.54 Similar 
correlations are observed when fibrinogen itself is pharmacologi-
cally or genetically reduced in AD mouse models, as these strate-
gies result in less neuronal death, synaptic dysfunction, and amyloid 
pathology as well as improved cognition compared to AD control 
mice.54,79 Anticoagulant treatment has been found to slow cognitive 
dysfunction in people with dementia.85,86 Oral anticoagulant treat-
ment was also associated with a lower risk of cognitive decline in 
people with atrial fibrillation.87 Despite these findings, anticoagulant 
therapy is controversial since elderly patients are at higher risk of 
bleeding.88

Fibrinogen can directly drive disease pathology via activating 
microglial inflammatory responses and increasing the generation of 
reactive oxygen species.15 Fibrinogen-mediated microglial activa-
tion via CD11b receptor binding leads to cognitive deficits in an AD 

mouse model through elimination of dendritic spines, tiny extensions 
on neurons that harbor synaptic receptors of excitatory connections 
in the brain and are critical for memory and cognitive function.89 
Genetic disruption of the fibrinogen domain that binds to and acti-
vates the CD11b receptor on microglia results in reduced neurode-
generation and memory impairment in AD mice.15 Cerebral injection 
of fibrinogen itself can induce neuronal injury such as spine elimina-
tion and dendritic loss,15 and in the presence of Aβ, the deleterious 
effect of fibrinogen is much more pronounced.15 Aβ42 can directly 
interact with fibrinogen and reduce its clearance.52,53,56 Microscopic 
analysis of fibrin clots formed in the presence of Aβ42 demonstrates 
significant structural abnormalities.52 Radiographic crystallography 
analysis revealed that the central region of Aβ binds to the outer D 
domain of fibrinogen, which alters its structure and blocks its cleav-
age by plasmin.56 This Aβ42-induced structural change could also 
be responsible for increased levels of a plasmin-resistant fibrin deg-
radation fragment.56 These results suggest that both vascular and 
extravasated fibrin(ogen) could synergize the Aβ-induced pathology 
in AD. In line with these results, a prospective population-based 
study that measured plasma fibrinogen levels in 2835 individuals 
longitudinally found that high fibrinogen levels were associated with 
increased risk of AD and dementia.90 Furthermore, a meta-analysis 
involving 3649 patients with dementia had significantly higher 
plasma fibrinogen levels than nondemented individuals.91

It is important to note that some Aβ mutations that are associ-
ated with EOAD, particularly the Dutch (E22Q) and Iowa (D23  N) 
mutations, increase Aβ’s toxicity as well as its vascular deposi-
tion.55,92-97 More specifically, the Dutch and Iowa Aβ mutations 
have a 50-fold higher binding affinity for fibrinogen.55 It has been 
suggested that this stronger affinity leads to greater structural clot 
abnormalities and further delayed fibrinolysis compared to wild-
type Aβ.55 Furthermore, AD patients who harbor the Dutch or Iowa 
mutations have significantly more fibrin deposits and Aβ-fibrin(ogen) 
codeposits in postmortem brain tissue compared to patients with-
out these mutations.55 Taken together, these findings reveal that the 
Aβ-fibrin(ogen) interaction is instrumental in driving cerebrovascular 
pathologies and cognitive decline in AD. Thus, inhibiting the inter-
action between fibrinogen and Aβ could be a promising therapeutic 
strategy in AD.

6  |  NOVEL THER APEUTIC STR ATEGIES 
FOR AD

6.1  |  Inhibiting the plasma contact system

If a dysregulated contact system is contributing to AD pathology, 
blocking or inhibiting this system should show beneficial effects in 
AD. It has been shown that peripheral reduction of FXII (by FXII an-
tisense oligonucleotide, FXII-ASO) in an AD mouse model not only 
prevents contact activation in plasma, but also significantly reduces 
microglial and astrocytic activation in the brain parenchyma.69 
Furthermore, AD mice treated with FXII-ASO show reduced 
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neuronal loss and less extravasated fibrin(ogen) compared to con-
trol AD mice. More importantly, FXII-ASO treated AD mice perform 
significantly better in cognitive tests compared to vehicle-treated 
AD mice.69 Collectively, these results suggest that dysregulation of 
the contact system contributes to AD pathology and memory im-
pairment and that inhibiting this system could prove beneficial in 
AD. Further studies are needed to establish whether AD pathology 
initially triggers the contact system or an activated contact system 
exacerbates AD progression.

Contact system activation could also be a significant contribu-
tor to the inflammation observed in AD, both via fibrin(ogen) and 
bradykinin. Directly blocking HK cleavage to prevent bradykinin 
generation is another promising strategy to reduce the contact 
system-driven inflammatory response in AD. We have recently 
shown that a monoclonal anti-HK antibody, 3E8, can block Aβ42-
induced HK cleavage and bradykinin generation in human plasma.98 
Also, an oral PK-targeting therapy, another promising approach for 
blocking contact system activation, is undergoing clinical trial test-
ing.99,100 It should be noted that people who lack contact system 
components (FXII-, HK-, or PK-deficient individuals) are not prone 
to bleeding,101-108 since intrinsic clotting is not the main coagula-
tion pathway in the body.61,109,110 Therefore, blocking the contact 
system in patients would not increase the risk of hemorrhage. The 
3E8 anti-HK antibody or other contact system inhibitors could be 
effective at ameliorating not only vascular and inflammatory pa-
thologies in AD but also other diseases and vascular pathologies in 
which the contact system is also dysregulated, such as hereditary 
angioedema,111 sickle cell anemia,112 lupus,113 rheumatoid arthri-
tis,114 multiple sclerosis–associated neuroinflammation,66,115 infec-
tion (sepsis/endotoxemia),116,117 and colitis.118

6.2  |  Blocking the Aβ-fibrinogen interaction

Treatment of AD mice with RU-505, a small molecule that inhibits the 
Aβ42-fibrinogen interaction, leads to reduced cerebral inflammation, 
less vascular Aβ deposition, and improved cognitive function com-
pared to untreated AD mice.14 The inhibition of the Aβ-fibrinogen 
interaction also prevents the Aβ-induced structural abnormalities of 
fibrin clots and the altered thrombosis and fibrinolysis observed in 
AD mice.14 These findings suggest that blocking the Aβ-fibrinogen in-
teraction not only reduces thrombotic abnormalities but also lessens 
neuroinflammation, cognitive impairment, and other AD pathologies. 
Moreover, some of the Aβ aggregation inhibitors simultaneously 
inhibit the Aβ-fibrinogen interaction, and their inhibitory activity 
could be further increased by making chemical modifications.119 
Collectively, these data suggest that the interaction between vascu-
lar fibrinogen and pathogenic Aβ could be extremely detrimental and 
that minimizing this crosstalk could be beneficial in AD.

7  |  CONCLUSION AND FUTURE 
DIREC TIONS

AD is a multifactorial condition in which various pathways may 
synergize to produce the deleterious effects on brain function. 
Therefore, targeting various pathways in a combination therapy 
could maximize the beneficial outcome in AD treatment. Treating 
vascular dysregulation in AD could also improve brain function 
and memory along with minimizing vascular defects. We have 
provided evidence to support a mechanistic link between vas-
cular components and AD pathologies. The crosstalk between 
pathogenic Aβ and circulatory fibrinogen as well as between Aβ 
and components of contact or intrinsic pathway (FXII, HK, PK) 
could dramatically affect the numerous pathologies found in peo-
ple with AD. Targeting the contact system and amyloid pathology 
together or targeting contact system activation alone could im-
prove cognitive function in people with AD with vascular deficits. 
Moreover, a monoclonal anti-HK antibody could be a promising 
drug candidate to treat thrombotic and inflammatory conditions in 
AD. Markers of contact activation—cHK, kallikrein activity, FXIIa, 
delayed intrinsic clotting (aPTT)—could be used to quickly diag-
nose people with MCI and AD with a vascular component to their 
pathology, and preventive or therapeutic care could be provided 
before severe AD onset.
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